Enhancing Photocatalytic Activity of Bismuth Ferrite (BiFeO3) via Gadolinium and Copper Doping: A Sol-Gel Synthesis and Characterization Study
DOI:
https://doi.org/10.47352/jmans.2774-3047.95Keywords:
Rhodamine BAbstract
In this current research work, the sol-gel method was employed to synthesise, characterize and evaluate the photocatalytic activity of bismuth ferrite (BiFeO3, BFO) doped with two distinctive components consisting of a rare earth element Gadolinium (Gd) and a transition metal Copper (Cu). The dopant concentrations were systematically varied with different weight percentages (wt.%) denoted as Bi1-xGdxFe1-yCuyO3 (where ‘x’ = 0.10, 0.15 and 0.20 wt.%, where ‘y’ = 0.05, 0.10, and 0.15 wt.%). Subsequently, characterizations of the prepared samples were conducted using an array of cutting-edge analytical techniques including X-ray diffraction (XRD), filed emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), and transmission electron microscopy (TEM). The XRD analysis results indicated that the presence of small impurity peaks was found in both Gd-doped BFO and GdCu-doped BFO. The FE-SEM and TEM results provided confirmation that the material was observed as a spherical shape, and the elemental compositions were also confirmed through EDAX analysis. The photocatalytic degradation of Rhodamine B dye under the influence of visible light irradiation was carried out and the results revealed varying degradation times, specifically, for Gd and Cu-doped BFO (Gd and Cu = 0.1 wt.%) achieved almost 98% degradation occurred in 30 minutes.Downloads
Published
2024-01-31
Issue
Section
Articles
License
Copyright (c) 2024 Beerelli Rajitha, Padma Suvarna (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.





