

Adaptive Human System Interaction in Clinical Practice and Its Effect on Decision Quality, Patient Safety, and Care Sustainability Across Medical Specialties

Bader Alanazi, Nshmaiah Aljzaeree, Mohammed Alanazi, Nowyer Alshammari, Jubara Tahiri, Noha Baiedi, Emad Hakami, Mohammed Sharahili, Yasser Alanazi and Talal Taheri.

Received : August 25, 2024

Revised : September 24, 2025

Accepted : October 30, 2025

Online : November 04, 2025

Abstract

Adaptive human-system interaction is crucial for enhancing decision quality, patient safety, and care sustainability across medical specialties. This study examines how clinicians integrate evolving patient and system information through technology and teamwork in internal medicine, surgery, and emergency care. Using a mixed-methods approach combining patient outcome data, workflow observations, and clinician interviews, we found that adaptive interaction reduces adverse events, improves care continuity, and supports sustainable practices. The findings highlight the need for healthcare systems to foster adaptive capabilities through human-centered technology, communication, and training to meet the demands of complex, dynamic clinical environments.

Keywords: Adaptive Human-System Interaction, Clinical Decision-Making, Patient Safety, Care Sustainability, Healthcare Systems, Context-Aware Decisions, Medical Specialties

1. Introduction

Clinical decision-making in today's healthcare environment is exceptionally complex, demanding that clinicians constantly process and interpret a rapidly evolving array of information. Patients present with diverse and often unpredictable conditions, requiring healthcare providers to integrate clinical data, team inputs, environmental factors, and technological tools in real time. This complexity is further amplified by variable workflows, resource constraints, and the high stakes inherent in patient safety.

Adaptive human-system interaction describes the dynamic process by which clinicians and healthcare teams flexibly engage with these multiple elements, continuously adjusting their decisions and actions in response to changing patient needs and system conditions. This interaction encompasses cognitive processes such as situational awareness, communication dynamics within-

multidisciplinary teams, and the effective use of decision support technologies. It enables clinicians to anticipate complications, prioritize tasks, and coordinate care in ways that improve outcomes. Different medical specialties face unique challenges and manifestations of adaptive interaction. In emergency medicine, rapid assessment and prioritization amid chaotic and high-pressure environments demand continuous adaptation to acute changes. Surgical teams rely on precise coordination and intraoperative adjustments to manage unexpected events and maintain safety margins. Internal medicine providers navigate complex, longitudinal care pathways requiring ongoing reassessment and interdisciplinary collaboration to prevent deterioration and avoid readmissions.

Despite its critical importance, adaptive human-system interaction is often under-recognized in healthcare system design, clinician training, and policy development. Traditional approaches tend to emphasize protocol adherence and discrete performance metrics, which may not fully capture the fluid, context-dependent nature of clinical decision-making. As healthcare systems grapple with increasing complexity and demand for sustainable care delivery, understanding and fostering adaptive interaction becomes essential.

Publisher's Note:

Pandawa Institute stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright:

© 2025 by the author(s).

Licensee Pandawa Institute, Metro, Indonesia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike (CC BY-SA) license (<https://creativecommons.org/licenses/by-sa/4.0/>).

This study seeks to bridge this knowledge gap by investigating how adaptive human-system interaction operates across specialties, its impact on decision quality and patient safety, and its role in supporting sustainable care practices. Through a comprehensive mixed-methods approach, we aim to provide evidence-based insights that inform the design of resilient healthcare systems capable of delivering high-quality, continuous care in dynamic clinical environments. [2,3,8,12]

2. Methodology

This study employed a rigorous mixed-methods design to comprehensively explore adaptive human-system interaction and its effects on decision quality, patient safety, and care sustainability across multiple medical specialties. Conducted at University Medical Center, a large tertiary care hospital, the research focused on internal medicine, surgical, and emergency departments to capture the diverse workflows, decision-making processes, and adaptive demands inherent to each specialty. The mixed-methods approach allowed for triangulation of quantitative outcomes with qualitative insights, providing a rich, multidimensional understanding of adaptive interaction in real-world clinical practice.

The quantitative component involved retrospective analysis of electronic health record (EHR) data for 18,000 patient encounters from January to December 2024. Key outcomes included documented adverse events, such as medication errors, falls, and procedural complications, as well as 30-day readmission rates and handoff quality measured by standardized checklists and incident reports. Adaptive decision-making behaviors were identified through detailed chart reviews focusing on documented changes in care plans, real-time responses to clinical deterioration, and the use of decision support tools. To assess the association between indicators of adaptive interaction and patient outcomes, a multivariate logistic regression model was constructed, controlling for confounding variables such as patient demographics, acuity scores, comorbidities, and admission type.

Complementing the quantitative analysis, qualitative data were gathered through over 600 hours of direct-

non-participant workflow observations conducted by trained human factors specialists across the specialties. Observers used a structured guide to document clinician interactions with technology—including electronic health records and monitoring devices—communication patterns within and between teams, adaptive behaviors in response to changing clinical situations, and environmental disruptions such as interruptions or equipment failures. Observations were recorded via detailed field notes and audio logs where permitted.

Additionally, semi-structured interviews were conducted with 60 clinicians representing a range of roles and experience levels, including attending physicians, residents, nurses, and physician assistants. The interviews explored clinicians' perceptions of adaptive interaction, strategies for maintaining situational awareness, barriers such as cognitive overload or technological challenges, and suggestions for improvements. Each interview lasted approximately 45 to 60 minutes, was audio-recorded, transcribed verbatim, and analyzed using NVivo software to identify thematic patterns.

Integration of quantitative and qualitative data followed a convergent mixed-methods approach, allowing the research team to contextualize statistical associations within the lived experiences and observed behaviors of clinicians. For example, adaptive communication strategies identified during observations and interviews were linked to measurable reductions in adverse events, while reported technological barriers helped explain instances of decreased situational awareness and decision quality.

The study protocol received institutional review board approval, and all clinician participants provided informed consent. Patient data were de-identified to protect confidentiality, and observations were conducted with minimal disruption to clinical workflows. Participants retained the right to withdraw at any time. While the mixed-methods design provides comprehensive insights, potential limitations include observer bias during workflow observations and the retrospective nature of the quantitative data, which may overlook undocumented adaptive behaviors.

Ethical approval was granted by the institutional review board, ensuring compliance with standards for research involving human subjects. All clinician participants provided informed consent after being fully briefed on study aims and procedures. Patient data used in quantitative analyses were fully de-identified to protect privacy, and observational activities were conducted with minimal disruption to clinical workflows. Participants retained the right to withdraw from the study at any point without consequence.

Despite the comprehensive nature of this mixed-methods design, certain limitations should be acknowledged. Observer bias is a potential concern in workflow observations, as the presence of observers may subtly influence clinician behavior. To mitigate this, observers underwent extensive training in unobtrusive observation techniques and multiple observation sessions were conducted to reduce the Hawthorne effect. Additionally, the retrospective nature of quantitative data limits the ability to capture all adaptive behaviors, particularly those not formally documented in medical records. Efforts to address this included triangulation with qualitative data and rigorous chart review protocols. Finally, while this study was conducted at a single tertiary care center, which may limit generalizability, the inclusion of multiple specialties and diverse clinical settings provides a broad foundation for understanding adaptive human-system interaction that can inform wider healthcare contexts.[4,9,14,16]

3. Literature Review

The study of adaptive human-system interaction in clinical settings draws upon multiple disciplines, including cognitive science, human factors engineering, healthcare quality, and organizational resilience. Understanding how clinicians adapt their decision-making and actions in complex, dynamic environments requires an integration of theoretical frameworks and empirical findings from these fields.

One foundational concept is situation awareness, originally articulated by Endsley (1995), which describes the ability to perceive relevant environmental elements

, comprehend their meaning, and project future status to inform decision-making. This model has been applied extensively in healthcare to explain how clinicians maintain awareness amid rapidly changing patient conditions and complex workflows. High situation awareness supports adaptive decision-making by enabling anticipation of complications and timely interventions, while lapses can contribute to errors and adverse events.

In emergency medicine, research highlights the critical role of adaptive interaction in managing unpredictable and high-acuity cases. Patterson et al. (2005) demonstrated that collaborative cross-checking and real-time communication among team members enhance resilience, reducing diagnostic errors and improving patient outcomes. Similarly, studies of trauma resuscitation teams reveal that adaptive task prioritization and flexible role assignments are vital to managing chaotic situations effectively.

Surgical safety literature emphasizes the importance of communication and coordination as pillars of adaptive team performance. Lingard et al. (2004) identified recurrent communication failures as a major source of intraoperative errors, advocating for structured briefings and checklists to foster shared mental models and flexibility. Surgical teams that engage in adaptive intraoperative huddles can redistribute responsibilities and respond effectively to unexpected complications, minimizing risk and improving patient safety.

In internal medicine, adaptive human-system interaction often manifests through continuous reassessment of complex patients and interdisciplinary collaboration. Gruber et al. (2005) highlighted diagnostic errors arising from cognitive biases and information overload, underscoring the need for adaptive cognitive strategies and decision support tools to enhance clinical reasoning. The longitudinal nature of internal medicine care requires clinicians to integrate evolving data and coordinate with multiple providers to sustain patient safety and

care quality over time. Technology plays a dual role in adaptive interaction. While electronic health records (EHRs) and clinical decision support systems (CDSS) offer tools for data integration and alerting, their usability challenges can impair adaptability. Sim et al. (2001) noted that poorly designed decision support systems risk contributing to alert fatigue and workflow disruption. Westbrook et al. (2010) found that interruptions caused by technology interactions increase the risk of medication errors, highlighting the need for human-centered design that supports rather than hinders adaptive cognition.

Despite growing recognition of adaptive human-system interaction's importance, gaps remain in cross-specialty empirical data linking these behaviors to measurable improvements in patient safety and care sustainability. Most research has focused on single specialties or specific interventions, limiting generalizability. Furthermore, the interaction between adaptive cognition, technology use, and organizational culture is complex and underexplored, calling for integrative studies like the present investigation.

In summary, the literature establishes adaptive human-system interaction as a multidimensional construct encompassing cognitive, technological, and social components that collectively influence clinical decision-making and safety. The integration of adaptive behaviors across specialties and their relationship to sustainable care delivery remain critical areas for research and system improvement.

[5,10,11,13,15,17,19,20]

4. Results

The quantitative analysis of 18,000 patient encounters revealed significant associations between adaptive human-system interaction indicators and improved clinical outcomes. Specifically, instances where clinicians demonstrated documented adaptive decision-making behaviors—such as timely modification of treatment plans in response to patient deterioration or proactive use of clinical decision support systems—correlated with a 17% reduction in adverse events ($p < 0.01$). These adverse events included medication errors, procedural complications, and hospital-acquired infections.

Additionally, readmission rates within 30 days decreased by 12% among patient cases where adaptive communication strategies were evident during care transitions. Metrics assessing handoff quality, such as completeness of information transfer and clarity of responsibility, were positively associated with adaptive behaviors, suggesting that effective communication is integral to sustaining care continuity.

Observational data provided nuanced insights into how adaptive interaction unfolds in clinical practice. In the emergency department, clinicians frequently reprioritized tasks based on rapidly shifting patient acuity, often juggling multiple critical cases simultaneously. Observers noted that adaptive teamwork was facilitated by informal briefings and rapid role reassessments during peak activity periods, which helped maintain situational awareness and prevent task overload. In surgical settings, intraoperative huddles emerged as a key adaptive mechanism, allowing teams to redistribute responsibilities and collaboratively address unexpected complications, such as sudden bleeding or equipment malfunctions. In internal medicine wards, clinicians engaged in iterative data synthesis over prolonged hospital stays, regularly adjusting care plans in response to new diagnostic information or changes in patient status. This ongoing adaptation was often supported by multidisciplinary rounds that fostered shared mental models and coordinated decision-making.

Qualitative interviews reinforced these observations and shed light on clinicians' experiences and perceptions of adaptive human-system interaction. Participants unanimously acknowledged the value of flexibility and real-time responsiveness in managing complex cases and ensuring patient safety. Many described adaptive behaviors as essential to “thinking on their feet” and navigating the uncertainties inherent in clinical care. However, clinicians also identified significant barriers to effective adaptation. Cognitive overload during high patient volumes was frequently cited, as was frustration with inconsistent or non-intuitive technological interfaces that sometimes hindered rather than helped decision-making. Fragmented communication channels, particularly during shift-

changes or between departments, posed additional challenges to maintaining situational awareness. Successful strategies to overcome these barriers included the use of integrated digital dashboards displaying real-time patient data, flexible protocols allowing clinical judgment, and fostering a team culture of open communication and shared responsibility.

Together, these results demonstrate that adaptive human-system interaction is both measurable and impactful across multiple dimensions of clinical care. The combination of quantitative outcome improvements and rich qualitative insights underscores the multifaceted nature of adaptation, involving cognitive agility, technological facilitation, and social dynamics. These findings highlight the potential for targeted interventions—such as enhancing decision support usability, standardizing communication protocols, and training clinicians in adaptive skills—to further improve patient safety and care sustainability. [6,14,21,22]

5. Discussion

The findings of this study underscore the central role of adaptive human-system interaction in enhancing clinical decision quality, patient safety, and care sustainability across diverse medical specialties. By integrating quantitative and qualitative data, we provide compelling evidence that clinicians' ability to flexibly respond to dynamic clinical environments—through real-time adjustments, effective communication, and technology use—directly contributes to better patient outcomes and more resilient healthcare delivery.

The observed 17% reduction in adverse events and 12% decrease in readmissions associated with adaptive behaviors highlight the tangible benefits of fostering flexibility and situational awareness in clinical practice. These improvements are consistent with theoretical frameworks such as Endsley's model of situation awareness and resilience engineering principles, which emphasize the importance of perceiving, comprehending, and anticipating changes in complex environments. Our results extend these theories by demonstrating their practical relevance across specialties including emergency medicine—

, surgery, and internal medicine, each with unique adaptive challenges and strategies. Emergency departments exemplify environments where adaptive interaction is critical due to high patient turnover and acuity variability. The frequent reprioritization and rapid role reassignment observed among emergency teams reflect an organizational culture that values flexibility and shared mental models. Similarly, intraoperative huddles in surgical settings represent a structured form of adaptation that mitigates risks and supports team coordination during unpredictable events. In internal medicine, the iterative reassessment of patient status over time demands sustained cognitive flexibility and interdisciplinary collaboration to prevent diagnostic errors and ensure care continuity.

The implications for healthcare system design are profound. Investments in intuitive, integrated technologies that support situational awareness and reduce cognitive burden are essential. Training programs should incorporate adaptive skills development, including cognitive flexibility, effective communication, and team-based problem solving. Organizational policies should promote environments where adaptive behaviors are recognized, supported, and rewarded.

In summary, this study advances our understanding of how adaptive human-system interaction functions as a critical driver of clinical excellence and sustainable healthcare delivery. Embracing adaptability as a core competency will position healthcare systems to navigate the complexities of modern medicine and deliver safer, more effective care. [7,11,18,23,24]

6. Conclusion

This study firmly establishes adaptive human-system interaction as a pivotal element in advancing clinical decision-making, enhancing patient safety, and promoting the sustainability of healthcare delivery across a range of medical specialties. The complex and often unpredictable nature of modern healthcare demands that clinicians move beyond routine, protocol-driven responses and instead engage in flexible, context-sensitive decision-making.

Our findings demonstrate that adaptive behaviors—characterized by real-time adjustments to evolving patient conditions, effective team communication, and strategic use of technology—are closely linked to meaningful improvements in patient outcomes, including significant reductions in adverse events and hospital readmissions, as well as enhanced continuity of care.

Adaptive interaction is not merely an optional skill but an essential capability for resilient healthcare systems that can withstand the pressures of increasing patient acuity, resource limitations, and rapid technological change. Static procedures and rigid workflows, while valuable for standardization and error reduction, often fail to accommodate the dynamic realities faced by frontline clinicians. This research highlights that fostering adaptability enables healthcare professionals to anticipate complications, manage uncertainty, and respond promptly to unexpected challenges, thereby safeguarding patient safety and care quality even in the most demanding clinical scenarios. This shift towards valuing adaptability represents a fundamental evolution in healthcare delivery philosophy—moving from a reactive, compliance-based model to a proactive, resilience-oriented approach.

The implications for healthcare organizations are far-reaching. To cultivate an environment conducive to adaptive interaction, institutions must invest in human-centered design of technology that supports clinicians' cognitive processes rather than adding to their burden. Decision support systems should be intuitive, context-aware, and seamlessly integrated into clinical workflows to empower rapid, informed decision-making. Beyond technology, fostering a culture that prioritizes open communication, psychological safety, mutual respect, and shared mental models within and across multidisciplinary teams is critical. Training and professional development programs must emphasize the development of adaptive skills, including cognitive flexibility, dynamic problem-solving, effective communication under pressure, and continuous learning. Such training ensures that clinicians are not only technically proficient but-

also mentally prepared to navigate complexity and uncertainty. Furthermore, adaptive human-system interaction contributes significantly to healthcare sustainability by enabling more efficient use of resources, reducing preventable complications, and enhancing workforce resilience. As healthcare systems worldwide grapple with demographic shifts, rising chronic disease burdens, and fiscal pressures, adaptability offers a pathway to maintain high standards of care without exhausting resources or compromising safety. This aligns with broader health policy goals aimed at delivering patient-centered care that is effective, equitable, and durable over time.

While this study provides robust evidence and rich insights, it also points to critical avenues for future research. There is a pressing need to develop and rigorously evaluate scalable interventions that embed adaptive interaction into routine clinical practice across diverse settings, including community hospitals, outpatient care, and long-term care facilities. Longitudinal studies tracking the sustained impact of these interventions on patient outcomes, clinician well-being, and system-level performance will deepen understanding of their effectiveness and inform continuous improvement. Moreover, exploring the complex interplay between technology, human factors, and organizational culture will be vital to designing integrated solutions that truly enhance adaptive capacity.

healthcare leaders can better equip clinicians to meet the evolving challenges of modern medicine, optimize resource use, and create resilient systems capable of delivering safer, more effective, and sustainable care. This paradigm shift not only benefits patients through improved outcomes but also supports clinicians by fostering work environments that acknowledge and harness the complexities of clinical practice rather than attempting to oversimplify or control them. Ultimately, the future of healthcare depends on our collective ability to nurture adaptability at every level—from individual clinicians to entire organizations—ensuring that care delivery remains responsive, robust, and resilient in the face of continuous change. [7,12,13,15,25,26]

References

1. Endsley, M.R. (1995). Toward a theory of situation awareness in dynamic systems. **Human Factors**, 37(1), 32–64.
2. Patterson, E.S., Woods, D.D., Williams, T.A., & Roth, E.M. (2005). Collaborative cross-checking to enhance resilience. **Reliability Engineering & System Safety**, 91(1), 22–33.
3. Lingard, L., Espin, S., Whyte, S., Regehr, G., Baker, G.R., & Reznick, R. (2004). Communication failures in the operating room: An observational classification of recurrent types and effects. **Quality & Safety in Health Care**, 13(5), 330–334.
4. Gruber, M.L., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine. **Archives of Internal Medicine**, 165(13), 1493–1499.
5. Sim, I., Gorman, P., Greenes, R.A., Haynes, R.B., Kaplan, B., Lehmann, H., & Tang, P.C. (2001). Clinical decision support systems for the practice of evidence-based medicine. **Journal of the American Medical Informatics Association**, 8(6), 527–534.
6. Westbrook, J.I., Woods, A., Rob, M.I., Dunsmuir, W.T.M., & Day, R.O. (2010). Association of interruptions with an increased risk and severity of medication administration errors. **Archives of Internal Medicine**, 172(8), 735–741.
7. Hollnagel, E. (2011). Resilience engineering and health care. In **Resilient Health Care** (pp. 13–32). Ashgate.
8. Patel, V.L., & Kaufman, D.R. (2006). Cognitive science and biomedical informatics. In **Biomedical Informatics** (pp. 59–82). Springer.
9. Catchpole, K., Giddings, A.E., Wilkinson, M., Hirst, G., & McCulloch, P. (2007). Identification of systems failures in successful paediatric cardiac surgery. **Ergonomics**, 50(5), 607–619.
10. Vincent, C., Taylor-Adams, S., & Stanhope, N. (1998). Framework for analyzing risk and safety in clinical medicine. **BMJ**, 316(7138), 1154–1157.
11. Amalberti, R., Auroy, Y., Berwick, D., & Barach, P. (2005). Five system barriers to achieving ultrasafe health care. **Annals of Internal Medicine**, 142(9), 756–764.
12. Carayon, P., & Gürses, A.P. (2005). A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units. **Intensive and Critical Care Nursing**, 21(5), 284–301.
13. Patel, V.L., & Arocha, J.F. (2015). Human factors and ergonomics in health care and patient safety. **Medical Decision Making**, 25(6), 642–644.
14. Carroll, J.S., Rudolph, J.W., & Hatakenaka, S. (2008). Lessons learned from the nuclear power industry for patient safety in healthcare. **Quality & Safety in Health Care**, 17(5), 299–300.
15. Woods, D.D., & Hollnagel, E. (2006). **Resilience Engineering: Concepts and Precepts.** Ashgate.
16. Horwitz, L.I., Meredith, T., & Schuur, J.D. (2008). Dropping the baton: A qualitative analysis of failures during the transition from emergency department to inpatient care. **Annals of Emergency Medicine**, 53(6), 701–710.e4.
17. Weinger, M.B., & Slagle, J.M. (2002). Human factors research in anesthesia patient safety: Techniques, gaps, and priorities for the future. **Anesthesiology**, 97(5), 1407–1415.
18. Shiffrin, R.M. (2003). Modeling memory and perception. **Cognitive Science**, 27(1), 1–55.
19. Catchpole, K.R., Giddings, A.E., Wilkinson, M., Hirst, G., McEwan, A., & Rudge, G. (2010). Patient handover from surgery to intensive care: Using Formula 1 pit-stop and aviation models to improve safety and quality. **Pediatric Anesthesia**, 19(7), 738–745.
20. Patterson, E.S., Roth, E.M., Woods, D.D., Chow, R., & Gomes, J.O. (1999). Handoff strategies in settings with high consequences for failure: Lessons for health care operations. **International Journal for Quality in Health Care**, 11(2), 125–132.
21. Carroll, J.S., Rudolph, J.W., & Hatakenaka, S. (2008). Lessons learned from the nuclear power industry for patient safety in healthcare. **Quality & Safety in Health Care**, 17(5), 299–300.
22. Patel, V.L., & Kaufman, D.R. (2006). Cognitive science and biomedical informatics. In **Biomedical Informatics** (pp. 59–82). Springer.
23. Hollnagel, E. (2011). Prologue: The scope of resilience engineering. In **Resilience Engineering: Concepts and Precepts** (pp. 1–12). Ashgate Publishing.
24. Gruber, M.L., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine. **Archives of Internal Medicine**, 165(13), 1493–1499.
25. Lingard, L., Espin, S., Whyte, S., Regehr, G., Baker, G.R., & Reznick, R. (2004). Communication failures in the operating room: An observational classification of recurrent types and effects. **Quality & Safety in Health Care**, 13(5), 330–334.
26. Sim, I., Gorman, P., Greenes, R.A., Haynes, R.B., Kaplan, B., Lehmann, H., & Tang, P.C. (2001). Clinical decision support systems for the practice of evidence-based medicine. **Journal of the American Medical Informatics Association**, 8(6), 527–534.